
AutoFLox: An Automatic Fault Localizer for
Client-Side JavaScript

Frolin S. Ocariza, Jr., Karthik Pattabiraman Ali Mesbah
University of British Columbia

Vancouver, BC, Canada
{frolino, karthikp, amesbah}@ece.ubc.ca

Abstract—JAVASCRIPT is a scripting language that plays a
prominent role in modern web applications today. It is dynamic,
loosely typed, and asynchronous. In addition, it is extensively used
to interact with the DOM at runtime. All these characteristics
make JAVASCRIPT code error-prone and challenging to debug.
JAVASCRIPT fault localization is currently a tedious and mainly
manual task. Despite these challenges, the problem has received
very limited attention from the research community. We propose
an automated technique to localize JAVASCRIPT faults based on
dynamic analysis of the web application, tracing, and backward
slicing of JAVASCRIPT code. Our fault localization approach is
implemented in an open source tool called AUTOFLOX. The
results of our empirical evaluation indicate that (1) DOM-related
errors are prominent in web applications, i.e., they form at least
79% of reported JAVASCRIPT bugs, (2) our approach is capable
of automatically localizing DOM-related JAVASCRIPT errors with
a high degree of accuracy (over 90%) and no false-positives, and
(3) our approach is capable of isolating JAVASCRIPT errors in a
production web application, viz., Tumblr.

Index Terms—JavaScript, fault localization, dynamic slicing,
Document Object Model (DOM)

I. INTRODUCTION

Client-side JAVASCRIPT is increasingly used in web ap-
plications to increase their interactivity and responsiveness.
JAVASCRIPT-based applications suffer from multiple depend-
ability problems due to their distributed, dynamic nature, as
well as the loosely typed semantics of JAVASCRIPT. A com-
mon way of gaining confidence in software dependability is
through testing. Although testing of modern web applications
has received increasing attention in the recent past [1], [2],
[3], [4], there has been little work on what happens after a
test reveals an error. Debugging of web applications is still an
expensive and mostly manual task. Of all debugging activities,
locating the faults, or fault localization, is known to be the
most expensive [5], [6].

The fault-localization process usually begins when the de-
velopers observe an error in a web program either spotted
manually or through automated testing techniques. The devel-
opers then try to understand the root cause of the error by
looking at the JAVASCRIPT code, examining the Document
Object Model (DOM)1 tree, modifying the code (e.g., with
alerts or tracing statements), running the application again,
and manually going through the initial series of navigational

1 DOM is a standard object model representing HTML at runtime. It is used for
dynamically accessing, traversing, and updating the content, structure, and style of HTML
documents.

actions that led to the faulty state or running the corresponding
test case.

Manually isolating a JAVASCRIPT error’s root cause requires
considerable time and effort on the part of the developer. This
is partly due to the fact that the language is not type-safe,
and has loose error detection semantics. Thus, an error may
propagate undetected in the application for a long time before
finally triggering an exception. Further, errors may arise due
to subtle asynchronous and dynamic interactions at runtime
between the JAVASCRIPT code and the DOM tree, which
make it challenging to understand their root causes. Finally,
errors may arise in third-party code (e.g., libraries, widgets,
advertisements), and may be outside the expertise of the web
application’s developer.

Although fault localization in general has been an active
research topic [6], [7], [8], [9], automatically localizing web
faults has received very limited attention from the research
community. To the best of our knowledge, automated fault
localization for JAVASCRIPT-based web applications has not
been addressed in the literature yet.

To alleviate the difficulties with manual web fault local-
ization, in this paper, we propose an automated technique
based on dynamic backward slicing of the web application to
localize JAVASCRIPT faults. Our fault localization approach is
implemented in a tool called AUTOFLOX. We have empirically
evaluated AUTOFLOX on three open-source web applications
and a production web application, viz., Tumblr. The main
contributions of this paper include:
• A discussion of the challenges surrounding JAVASCRIPT

fault localization, highlighting the real-world relevance of
the problem and identifying DOM-related JAVASCRIPT
errors as an important sub-class of problems in this space;

• A fully automated technique for localizing DOM-related
JAVASCRIPT faults, based on dynamic analysis and back-
ward slicing of JAVASCRIPT code;

• An open-source tool, called AUTOFLOX, implementing
the fault localization technique;

• An empirical study to validate the proposed technique,
demonstrating its efficacy and real-world relevance.
Our examination of four bug-tracking systems indicates
that DOM-related errors form the majority of reported
JAVASCRIPT errors, i.e., at least 79% of the reported
JAVASCRIPT errors were DOM-related. The results of our
study show that our approach is capable of successfully

1 function changeBanner(bannerID) {
2 clearTimeout(changeTimer);
3 changeTimer = setTimeout(changeBanner , 5000);
4
5 prefix = "banner_";
6 currBannerElem = document.getElementById(←↩

prefix + currentBannerID);
7 bannerToChange = document.getElementById(←↩

prefix + bannerID);
8 currBannerElem.removeClassName("active");
9 bannerToChange.addClassName("active");

10 currentBannerID = bannerID;
11 }
12 currentBannerID = 1;
13 changeTimer = setTimeout(changeBanner , 5000);

Fig. 1. Example JAVASCRIPT code fragment based on tumblr.com.

localizing DOM-related faults with a high degree of
accuracy (over 90%) and no false positives.

II. CHALLENGES AND MOTIVATION

In this section, we describe how JAVASCRIPT2 differs
from other traditional programming languages and discuss the
challenges involved in localizing faults in JAVASCRIPT code.
First, we present a JAVASCRIPT code fragment that we will
use as a running example throughout the paper.

A. Running Example

Figure 1 presents an example JAVASCRIPT code fragment
to illustrate some of the challenges in JAVASCRIPT fault-
localization. This code fragment is based on the code of a
real-world web application.3

The web application pertaining to the code fragment in
Figure 1 consists of a banner at the top of the page. The image
shown on the banner cycles through four images periodically
(every 5000 milliseconds). The four images are each wrapped
in DIV elements with DOM IDs banner_1 through banner_4.
The DIV element wrapping the image being shown is identified
as “active” via its class attribute.

In the above code, the changeBanner function (Lines 1 to
10) updates the banner image to the next one in the sequence
by updating the DOM. Lines 12 and 13 which are outside the
function are executed at load time. Line 12 sets the value of
variable currentBannerID to 1, indicating that the current
image being shown is banner_1. Line 13 sets a timer that
will asynchronously call the changeBanner function after 5
seconds (i.e., 5000 milliseconds). After each execution of the
changeBanner function, the timeout is cleared and reset so
that the image is changed again after 5 seconds.

The JAVASCRIPT code in Figure 1 will throw a null
exception in Line 9 when executed. Specifically, in the
setTimeout calls, changeBanner is invoked without being
passed a parameter, even though the function is expecting an
argument, referenced by bannerID. Omitting the argument
will not lead to an interpretation-time exception, rather the

2 In this paper, we use JAVASCRIPT to mean client-side JAVASCRIPT.
3 https://www.tumblr.com

bannerID will be set to a random value when changeBanner
executes. If the random value of bannerID falls outside the
allowed range (i.e., 1, 2, 3, or 4), the call to getElementById
in Line 7 will return null. For example, if bannerID is
−11, the second getElementById call will look for the ID
“banner_-11” in the DOM; since this ID does not exist, a
null will be returned. Hence, accessing the addClassName
method via bannerToChange in Line 9 will lead to a null
exception.

We note that this error arises due to the loose typing
and permissive error semantics of JAVASCRIPT. Further, to
understand the root cause of the error, one needs to analyze
the execution of both the JAVASCRIPT code and the DOM.
However, once the fault has been identified, the fix is relatively
straightforward, viz. modify the setTimeout call in Line 13
to pass a valid value to the changeBanner function.

B. JAVASCRIPT Fault Localization

Although JAVASCRIPT is syntactically similar to languages
such as Java and C++, it differs from them in two important
ways, which makes fault localization challenging.

Asynchronous Execution: JAVASCRIPT code is executed
asynchronously, and is triggered by the occurrence of events
such as user-triggered ones (e.g., click, mouseover), page load,
or asynchronous function calls. These events may occur in
different orders; although JAVASCRIPT follows a sequential
execution model, it does not provide deterministic ordering. In
Figure 1, the execution of the lines outside the changeBanner
function is triggered by the load event, while the execution
of the changeBanner itself is triggered asynchronously by a
timeout event via the setTimeout call. Thus, each of these
events triggered the execution of two different sequences
of JAVASCRIPT code. In particular, the execution sequence
corresponding to the load event is Line 12 → Line 13, while
the execution sequence corresponding to the asynchronous
event is Line 2 → Line 3 → Line 5 → Line 6 → Line 7
→ Line 8 → Line 9.

In traditional programming languages, the goal of fault
localization is to find the faulty lines of code. For JAVASCRIPT,
its asynchronous characteristic presents an additional chal-
lenge. The programmer will not only need to find the faulty
lines, but she will also have to map each executed sequence to
the event that triggered their execution in order to understand
the root cause of the error. In addition, event handlers may
overlap, as a particular piece of JAVASCRIPT code may be used
by multiple event handlers. Thus, manual fault localization in
client-side JAVASCRIPT is a tedious process, especially when
many events are triggered.

DOM Interactions: In a web application, JAVASCRIPT code
frequently interacts with the DOM, which characterizes the
dynamic HTML structure and elements present in the web
page. As a result, the origin of a JAVASCRIPT error is not
limited to the JAVASCRIPT code; the JAVASCRIPT error may
also result from a fault in the DOM. With regards to fault
localization, the notion of a “faulty line” of code may not
apply to JAVASCRIPT because it is possible that the fault is

in the DOM rather than the code. This is particularly true
for DOM-related JAVASCRIPT errors, which are defined as
JAVASCRIPT errors that lead to either exceptions or incorrect
DOM element outputs as a result of a DOM access or update.
As a result, for such errors, we need to formulate the goal
of fault localization to isolate the first line of JAVASCRIPT
code containing a call to a DOM access function (e.g.,
getAttribute(), getElementById()) or a DOM update
function/property (e.g., setAttribute(), innerHTML) that
directly causes JAVASCRIPT code to throw an exception, or
to update a DOM element incorrectly. This line is referred to
as the direct DOM interaction.

For the example in Figure 1, the JAVASCRIPT exception
occurs in Line 9, when the addClassName function is called on
bannerToChange, which is null. The null value originated
from Line 7, when the DOM access function getElementById
returned null; thus, the direct DOM interaction is actually at
Line 7. Note that even though this direct DOM interaction
does not represent the actual “faulty” lines which contain the
missing parameter to the changeBanner function (Lines 3
and 13), knowing that getElementById in Line 7 returned
null provides a hint that the value of either “prefix” or
“bannerID” (or both) is incorrect. Using this knowledge,
the programmer can isolate the faulty line of code as she
has to track the values of only these two variables. While
in this simple example, the direct DOM interaction line is
relatively easy to find, in more complex code the null value
could propagate to many more locations and the number of
DOM interactions to consider could be much higher, making
it challenging to identify the direct DOM interaction.

C. Scope of the Paper

In prior work [10], we found that deployed web applications
experience on average four JAVASCRIPT exceptions (mani-
fested as error messages) during execution. Further analysis
revealed that many of these errors were related to the DOM.
Therefore, we choose to study DOM-related JAVASCRIPT
errors in this paper. DOM-related JAVASCRIPT errors can be
further divided into two classes, listed below:

1) Code-terminating DOM-related JAVASCRIPT errors:
A DOM access function returns a null, undefined,
or incorrect value, which then propagates into several
variables and eventually causes an exception.

2) Output DOM-related JAVASCRIPT errors: A DOM
update function sets the value of a DOM element property
to an incorrect value without causing the code to halt.

In this paper, we focus on performing fault localization of
code-terminating DOM-related JAVASCRIPT errors as we have
observed (see Section V) that they are the more prominent of
the two classes. In the next section, we describe our fault
localization approach.

For code-terminating DOM-related JAVASCRIPT errors, the
direct DOM interaction is the DOM access function that
returned the null, undefined, or incorrect value, and is
referred to as the direct DOM access.

(1)
Intercept/Instrument

JavaScript code
(2)

Run Web Application
(3)

Generate Traces

(6)
Analyze Backward

Slice

(4)
Partition Trace into

Sequences

(5)
Extract Relevant

Sequences

JavaScript Execution Trace

Web Application

Direct DOM access

Trace Collection

Trace Analysis

Fig. 2. Block diagram illustrating our fault localization approach.

III. APPROACH

Our fault localization approach consists of two phases: (1)
trace collection, and (2) trace analysis. The trace collection
phase involves crawling the web application and gathering
traces of executed JAVASCRIPT statements until the occurrence
of the error that halts the execution. After the traces are
collected, they are parsed in the trace analysis phase to find
the direct DOM access. The two phases are described in detail
after we describe the usage model of the approach in the
next subsection. A block diagram of the approach is shown in
Figure 2.

A. Usage Model

Because we focus on fault localization, we assume that the
error whose corresponding fault needs to be localized has been
detected before the deployment of our technique. Further, we
also assume that the user is able to replicate the error during
the localization process.

Our approach is designed to automate the fault localization
process. The only manual intervention required from the user
is at the very beginning, where the user would have to specify
which elements in the web application to click (during the
trace collection phase) in order for the error to occur.

The output of our approach is the direct DOM access
corresponding to the error being localized and specifies, (1)
the function containing the direct DOM access, (2) the line
number of the direct DOM access relative to this function, and
(3) the JAVASCRIPT file containing the direct DOM access.

B. Trace Collection

In the trace collection phase, the web application is crawled
(by systematically emulating the user actions and page loads)
to collect the trace of executed JAVASCRIPT statements that
eventually lead to the error. This trace is generated through on-
the-fly instrumentation of each line of client-side JAVASCRIPT
code before it is passed on to and loaded by the browser
(box 1, Figure 2). Thus, for every line of JAVASCRIPT code
executed, the following information is written to the trace: (1)
the function containing the line, (2) the line number relative
to the function to which it belongs, (3) the names and scopes

1 Trace Record Prefix:
2 changeBanner :::4
3 Variables:
4 currentBannerID (global): 1
5 changeTimer (global): 2
6 bannerID (local): -11
7 prefix (local): none
8 currBannerElem (local): none
9 bannerToChange (local): none

Fig. 3. Example trace record for Line 5 of the running example from Figure 1.
The trace record prefix contains the name of the function and the line number
relative to this function. The variable names, scopes, and values are also
shown. Here, bannerID has randomly been assigned the value -11 because
this parameter is unspecified in the setTimeout call. Other variables which
have not been assigned values up to the current line are marked with “none”.

(global or local) of all the variables within the scope of the
function, and (4) the values of these variables prior to the
execution of the line. In the example in Figure 1, the order of
the first execution is as follows: Line 12 → Line 13 → Line
2 → Line 3 → Line 5 → Line 6 → Line 7 → Line 8 → Line
9. Thus, each of these executed lines will have an entry in the
trace corresponding to it. The trace record for Line 5 is shown
in Figure 3.

In addition to the trace entries corresponding to the exe-
cuted lines of JAVASCRIPT code, three special markers, called
ERROR, ASYNCCALL and ASYNC, are added to the trace.
The ERROR marker is used in the trace analysis phase to
determine at which line of JAVASCRIPT code the exception
was thrown. The ASYNCCALL and ASYNC markers address
the asynchronous nature of JAVASCRIPT execution as de-
scribed in Section II. In particular, these two markers are used
to determine the points in the program where asynchronous
function calls have been made, thereby simplifying the process
of mapping each execution trace to its corresponding event.

The ERROR marker is added when an error is detected
(the mechanism to detect errors is discussed in Section IV).
It contains information about the exception thrown and its
characteristics. In the example in Figure 1, the ERROR marker
is placed in the trace after the entry corresponding to Line 9,
as the null exception is thrown at this line.

The second marker, ASYNCCALL, is placed after an asyn-
chronous call to a function (e.g., via the setTimeout func-
tion). Each ASYNCCALL marker contains information about
the caller function and a unique identifier that distinguishes
it from other asynchronous calls. Every ASYNCCALL marker
also has a corresponding ASYNC marker, which is placed at
the beginning of the asynchronous function’s execution, and
contains the name of the function as well as the identifier
of the asynchronous call. In the example in Figure 1, an
ASYNCCALL marker is placed in the trace after the execution
of Line 13, which has an asynchronous call to changeBanner.
The corresponding ASYNC marker is placed before the execu-
tion of Line 2, at the beginning of the asynchronously called
function changeBanner.

To insert the ASYNCCALL and ASYNC markers, the known

asynchronous functions in JAVASCRIPT are overridden by a
trampoline function that sets up and writes the ASYNCCALL
marker to the trace. The trampoline function then calls the
original function with an additional parameter indicating the
identifier of the asynchronous call. This parameter is written
to the trace within the called function along with the ASYNC
marker to uniquely identify the asynchronous call.

C. Trace Analysis

Once the trace of executed statements has been collected,
the trace analysis phase begins. The goal of this phase is
to analyze the trace entries and find the direct DOM access
responsible for the JAVASCRIPT error. First, we partition the
trace into sequences, where a sequence represents the series
of JAVASCRIPT statements that were triggered by the same
event (e.g., a page load). Each sequence corresponds to exactly
one event. This step corresponds to box 4 in Figure 2. As
mentioned in the previous section, the executed JAVASCRIPT
in the example in Figure 1 consists of two sequences: one
corresponding to the load event, and the other corresponding
to the timeout event.

After partitioning the trace into sequences, the algorithm
looks for the sequence that contains the direct DOM access
(box 5 in Figure 2). We call this the relevant sequence. The
relevant sequence is initially chosen to be the sequence that
contains the ERROR marker. This marker will always be the
last element of the relevant sequence, since the execution of the
sequence must have halted once the error occurred4. The direct
DOM access will be found within the initial relevant sequence
provided the sequence was not triggered by an asynchronous
function call but rather by the page load or user-triggered
event. However, if the relevant sequence was triggered asyn-
chronously, i.e., it begins with an ASYNC marker, then the
sequence containing the corresponding asynchronous call (i.e.,
with the ASYNCCALL marker) is prepended to the relevant
sequence to create the new relevant sequence. This process is
continued recursively until the top of the trace is reached or
the sequence does not begin with an ASYNC marker.

In our running example, the relevant sequence is initially
set to the one corresponding to the timeout event and consists
of Line 2 → Line 3 → Line 5 → Line 6 → Line 7 →
Line 8 → Line 9 (see Sequence 2 in Figure 4). Because the
relevant sequence begins with an ASYNC marker, the sequence
containing the asynchronous call (see Sequence 1 in Figure 4)
is prepended to it to create the new, final relevant sequence.
However, there are no more sequences left in the trace and
the process terminates. Although in this example, the relevant
sequence consists of all executed statements, this will not
always be the case, especially in complex web applications
where many events are triggered.

Once the relevant sequence has been found, the algorithm
starts locating the direct DOM access within that sequence
(box 6 in Figure 2). To do so, it analyzes the backward slice
of the variable in the ERROR marker. If the line corresponding

4Recall that we consider only code-terminating errors in this paper.

1 Sequence 1:
2 root:::12 (Line 12)
3 root:::13 (Line 13)
4 root:::ASYNC_CALL - ID = 1
5 Sequence 2:
6 changeBanner:::ASYNC - ID = 1
7 changeBanner :::1 (Line 2)
8 changeBanner :::2 (Line 3)
9 changeBanner :::4 (Line 5)

10 changeBanner :::5 (Line 6)
11 changeBanner :::6 (Line 7)
12 changeBanner :::7 (Line 8)
13 changeBanner :::8 (Line 9) - ERROR
14 Relevant Sequence:
15 root:::12 (Line 12)
16 root:::13 (Line 13)
17 changeBanner :::1 (Line 2)
18 changeBanner :::2 (Line 3)
19 changeBanner :::4 (Line 5)
20 changeBanner :::5 (Line 6)
21 changeBanner :::6 (Line 7) **
22 changeBanner :::7 (Line 8)
23 changeBanner :::8 (Line 9) - ERROR

Fig. 4. Abridged execution trace for the running example showing the two
sequences and the relevant sequence. Each trace record is appended with either
a marker or the line number relative to the function. Numbers in parentheses
refer to the line numbers relative to the entire JAVASCRIPT file. root refers
to code outside a function. The line marked with a (**) is the direct DOM
access, and the goal of this design is to correctly identify this line as the
direct DOM access.

to the ERROR marker itself contains the direct DOM access,
the process is halted and the line is identified as the direct
DOM access. If not, a variable called null_var is introduced
to keep track of the most recent variable to have held the null
value.

The initial value of null_var is inferred from the error
message contained in the ERROR marker. The message is
typically of the form x is null, where x is the identifier of
a variable; in this case, the initial value of null_var is set to
the identifier x. The relevant sequence is traversed backward
and null_var is updated based on the statement encountered:

1) If the statement is an assignment of the form null_var
= new_var, null_var is set to the identifier of new_var.

2) If it is a return statement of the form return ret_var;,
where the return value is assigned to the current
null_var in the calling function, null_var is set to the
identifier of ret_var.

3) If it is a function call of the form foo(..., arg_var
,...) where foo() is a function with arg_var as one
of the values passed, and the current null_var is the pa-
rameter to which arg_var corresponds in the declaration
of foo(), null_var is set to the identifier of arg_var.

If the line does not fall into any of the above three forms,
it is ignored and the algorithm moves to the previous line.
Note that although syntactically valid, an assignment of the
form null_var = new_var1 op new_var2 op ..., where
op is a binary operator, makes little semantic sense as these
operations are not usually performed on DOM element nodes
(for instance, it makes no sense to add two DOM element

nodes together). Hence, we assume that such assignments
will not appear in the JAVASCRIPT code. Therefore, at every
statement in the code, null_var takes a unique value. In
addition, this implies that there can only be one possible direct
DOM access along the null propagation path.

The algorithm ends when new_var, ret_var, or arg_var
is a call to a DOM access function. The line containing this
DOM access is then identified as the direct DOM access.

In the example in Figure 1, the null_var is initialized to
bannerToChange. The trace analyzer begins at Line 9 where
the ERROR marker is placed; this is also the last line in
the relevant sequence, as seen in Figure 4. Because this line
does not contain any DOM access functions, the algorithm
moves to the previous line in the relevant sequence, which
is Line 8. It then determines that Line 8 does not take on
any of the above three forms and moves to Line 7. The
algorithm then determines that Line 7 is of the first form listed
above. It checks the new_var expression and finds that it is
a DOM access function. Therefore, the algorithm terminates
and identifies Line 7 as the direct DOM access.

IV. TOOL IMPLEMENTATION

We have implemented the approach described in Section III
in an automated tool called AUTOFLOX5 using the Java
programming language. In addition, a number of existing tools
are used to assist in the trace collection phase.

We use the CRAWLJAX [11] tool to systematically crawl the
web application and trigger the execution of JAVASCRIPT code
corresponding to user events. Other tools such as WaRR [12],
Mugshot [13], and Selenium6 can aid in the reproduction
phase. However, we have decided to use CRAWLJAX because
of the flexibility that it provides in allowing users to specify
clickable elements and text box inputs, and because of its
easy-to-use plugin development framework. Prior to crawling
the web application, the AUTOFLOX user can specify which
elements in the web application the crawler should examine
during the crawling process (otherwise the default settings
are used). These elements should be chosen so that the
JAVASCRIPT error is highly likely to be reproduced.7

Our JAVASCRIPT code instrumentation and tracing is based
on an extension of the INVARSCOPE8 [14] plugin to CRAWL-
JAX. We have made the following modifications in order to
facilitate the trace collection process:

1) While the original INVARSCOPE tool only collects traces
at the function entry and exit points, our modified version
collects traces at every line of JAVASCRIPT code to ensure
that the complete execution history can be analyzed in the
trace analysis phase.

2) The original INVARSCOPE does not place information on
the scope of each variable in the trace; thus, we have

5 http://ece.ubc.ca/~frolino/projects/autoflox/
6 http://seleniumhq.org
7 While non-deterministic errors can be localized with AUTOFLOX, they may require

multiple runs to reproduce the error
8 http://www.crawljax.com/plugins/invarscope-plugins/

modified it to retrieve this information and include it in
the trace.

3) Our modifications allow asynchronous function calls to
be overridden, and to place extra instrumentation at the
beginning of each function to keep track of asynchronous
calls (i.e., to write the ASYNC CALL and ASYNC
markers in the trace).

4) Finally, we place Try-Catch handlers around each func-
tion call in the JAVASCRIPT code in order to catch
exceptions and write ERROR markers to the trace in the
event of an exception.

Note that the tool allows the user to exclude specific
JAVASCRIPT files from being instrumented. This can speed
up the trace collection process, especially if the user is certain
that the code in those files does not contain the direct DOM
access.

Finally, the trace analysis phase has also been added as a
part of the AUTOFLOX tool implementation, and requires no
other external tools.

A. Assumptions

AUTOFLOX makes a few simplifying assumptions, listed
below. In our evaluation of the tool, we will assess the correct-
ness of AUTOFLOX on various open-source web applications,
thus evaluating the reasonableness of these assumptions.

1) The JAVASCRIPT error is manifested in a null exception,
where the null value is originated from a call to a DOM
access function.

2) There are no calls to recursive functions in the relevant
sequence.

3) The null variable does not propagate through anonymous
JAVASCRIPT function.

4) There are no object property accesses in the null prop-
agation path. In other words, our tool assumes that
null_var will only be a single identifier, and not a
series of identifiers connected by the dot operator (e.g.,
a.property, this.x, etc.)

V. EMPIRICAL EVALUATION

A. Goals and Research Questions

We have conducted an empirical study to (1) assess the
prominence of DOM-related JAVASCRIPT errors in web appli-
cations, and (2) evaluate the accuracy and real-world relevance
of our fault localization approach.

The research questions we wish to answer in our evaluation
are as follows:

RQ1: How prominent are DOM-related JAVASCRIPT errors
in web applications?

RQ2: What is the fault localization accuracy of AUT-
OFLOX? Are the implementation assumptions reasonable?

RQ3: What is the performance overhead of AUTOFLOX?

B. Methodology

The subsections that follow address each of the above
questions. An overview of the evaluation methodology we
have used to answer each research question is shown below.

RQ1 Approach: We answer this question by conducting a
study of 29 publicly available JAVASCRIPT bug reports from
four web applications. We characterize these bug reports as
either DOM-related or non-DOM-related, based on keyword
matching and manual analysis.

RQ2 Approach: To answer this question, we run AUT-
OFLOX on three open-source web applications and a produc-
tion website. We inject DOM-related JAVASCRIPT faults into
the open-source applications and run AUTOFLOX to localize
the direct DOM accesses corresponding to the faults. For
the production website, we use AUTOFLOX to perform fault
localization on a real JAVASCRIPT error we encountered.

RQ3 Approach: We measure the performance by calculat-
ing the overhead incurred by the instrumentation and the time
it takes for the tool to find the direct DOM access.

C. Prominence of DOM-related Errors

To answer RQ1, we conducted a study of 29 openly
available JAVASCRIPT bug reports from four open-source web
applications: TUDU,9 TASKFREAK,10 WORDPRESS,11 and
Google.12 Barring the above four applications, very few web
applications publicize their bug databases.

We searched the bug databases of the applications using
the keywords “javascript”, “js”, and “console”. In total, these
keywords gave us a list of 135 bug reports to consider. To
ensure that the reports correspond to real bugs, we restricted
ourselves to those that have subsequently been fixed —
specifically, those that have been marked as fixed or valid.13

Furthermore, to ensure that we consider only JAVASCRIPT
errors, we included only the bug reports whose fix involved
JAVASCRIPT. This includes bugs where the fix involved a
modification in the JAVASCRIPT code, or bugs that involved
a change in the server code because not applying such a fix
would result in a JAVASCRIPT exception. After applying these
inclusion criteria, we were left with a total of 29 JAVASCRIPT-
related bug reports.

The reports were classified into five categories, as follows.
The number of reports in each category are shown in Table I.

1) Code-terminating DOM-related (Type 1): An error
caused by a DOM access function that returns a null,
undefined, or incorrect value, which then propagates to
one or more variables and eventually causes an exception.

2) Output DOM-related (Type 2): An error caused by a
DOM update function that sets the value of a DOM
element property to an incorrect value without throwing
an exception.

3) DOM-related error of unknown kind (Type 3): A
DOM-related JAVASCRIPT error whose fix involved a

9 http://sourceforge.net/tracker/?group id=131842
10 http://forum.taskfreak.com/index.php?board=3.0
11 http://core.trac.wordpress.org/report/1
12 http://code.google.com/p/googlebugs/ - This is an unofficial bug tracker for Google

services such as Docs and GMail.
13 In the case of TASKFREAK, the bugs were reported via a forum, and did not

include such markings; thus, fixed bugs were manually inferred by reading the discussion
spawned by the bug report.

TABLE I
RESULTS OF THE STUDY ON 29 BUG REPORTS FROM FOUR OPEN-SOURCE WEB APPLICATIONS AND WEBSITE.

JAVASCRIPT Error Type Type Number Number of Bug Reports % of Total % of All Known DOM-related Errors
Code-terminating DOM-related 1 15 51.7 65.2
Output DOM-related 2 5 17.2 21.7
Unknown DOM-related 3 3 10.3 13.0
Non-DOM-related 4 5 17.2 —
Unknown Type 5 1 3.4 —
Total 29 100

DOM function, but it was not possible to determine from
the bug report whether it was type 1 or type 2.

4) Non-DOM-related error (Type 4): An error that does
not result from a DOM interaction.

5) Unknown JAVASCRIPT error (Type 5): A JAVASCRIPT
error where the bug report discussion does not make it
apparent if the error is DOM-related or not.

As seen in Table I, DOM-related JAVASCRIPT errors (Types
1, 2, and 3) make up anywhere between 79% (if none of the
Type 5 errors are DOM-related) and 83% (if all of the Type
5 errors are DOM-related) of the bug reports. This result sug-
gests two important findings: (1) DOM-related JAVASCRIPT
errors are abundant in web applications, and (2) users want
these errors to be fixed judging by the fact that these bugs were
reported by users (and fixed). In addition, Table I suggests
that code-terminating DOM-related JAVASCRIPT errors (Type
1) make up anywhere between 65% to 78% of all DOM-
related JAVASCRIPT errors, and are therefore more commonly
reported than output DOM-related JAVASCRIPT errors (Type
2). This partially motivated our decision to focus on code-
terminating JAVASCRIPT errors in this work.

D. Accuracy of AUTOFLOX

To answer RQ2, we performed a fault injection experi-
ment on three open-source web applications: TUDU (v. 2.3),
TASKFREAK (v. 0.6.4), and WORDPRESS (v. 3.2.1). The
applications consist of thousands of lines of JAVASCRIPT
code each. Note that we did not perform an experiment
on Google as we had no write-access to its source code,
preventing us from manually injecting faults. This experiment
was performed on the Mac OS/X Snow Leopard (10.6.6)
platform using the Firefox v. 3.6.22 web browser. The machine
used was a 2.66 GHz Intel Core 2 Duo, with 4 GB of RAM.
We use fault-injection to establish the ground truth for mea-
surement of the accuracy of AUTOFLOX. However, we did not
automate the fault injection process. Rather, we first searched
for calls to three DOM access functions, getElementById,
getAttribute and getComputedStyle in the JAVASCRIPT
code of each of the three web applications.14 We then manually
injected the faults as follows:
• For getElementById() calls, the ID parameter is mu-

tated either by switching the order of letters in the ID
string or by adding an extra string at the end of the ID.

14 To our knowledge, these are the only three DOM access functions in JAVASCRIPT
that return null if the DOM element is not found.

This will ensure that the getElementById() call will
return a null value, thereby leading to a null exception in
a later usage.

• For getAttribute() calls, the attribute name parameter
is mutated similarly, by switching the order of letters in
the attribute name string or appending an extra string at
the end of the attribute name. This will likewise ensure
that getAttribute() will return a null value, and its
later usage will lead to a null exception.

• No instances of getComputedStyle() were found in any
of the web applications, and hence this function is not
included in the results.

Only one mutation is performed in each run of the ap-
plication to ensure controllability. For each injection, the
direct DOM access is the mutated line of JAVASCRIPT code.
Thus, the goal is for AUTOFLOX to successfully identify this
mutated line as the direct DOM access, based on error message
printed due to the exception.

Furthermore, localization was performed on injected faults
rather than actual faults because no known code-terminating
DOM-related errors existed in these web applications at the
time of the experiment. However we attempted to emulate the
code-terminating DOM-related bugs we found in the study
reported in Section V-C (which had since been fixed) in our
injections.

Table II shows the results of our experiments. A total of
29 mutations were performed in TASKFREAK; 24 in TUDU;
and 13 in WORDPRESS. Only TUDU contained calls to
getAttribute(). As shown in the table, AUTOFLOX was
able to identify the direct DOM access for all mutations
performed in TUDU and TASKFREAK, garnering 100% ac-
curacy in these two applications. However, AUTOFLOX was
only successful in identifying the direct DOM access in 7 of
the 13 WORDPRESS mutations; for the other 6 mutations for
WORDPRESS, AUTOFLOX generated an error message stating
that the direct DOM access could not be found.

Further analysis of the JAVASCRIPT code in WORD-
PRESS revealed that these six mutations were all applied
to getElementById() calls that were within an anonymous
JAVASCRIPT function. Since AUTOFLOX assumes that the null
variable does not propagate through an anonymous function
(see Section IV-A), AUTOFLOX was not able to correctly
identify the direct DOM access in these cases. Note, however,
that this is an implementation issue, and there is no funda-
mental reason why support for anonymous functions cannot

TABLE II
RESULTS OF THE EXPERIMENT ON OPEN-SOURCE WEB APPLICATIONS, ASSESSING THE ACCURACY OF AUTOFLOX.

JAVASCRIPT Web Lines of Number of Number of Total Number Number of Percentage
Applications JAVASCRIPT getElementById getAttribute of direct DOM accesses identified

code mutations mutations mutations identified
TASKFREAK 3044 29 0 29 29 100%
TUDU 11653 21 3 24 24 100%
WORDPRESS 8366 13 0 13 7 53.8%
Overall 23063 63 3 66 60 90.9%

be integrated into the tool. One possible way of doing this
is by assigning a unique name to each anonymous function
encountered in the code to distinguish them from each other.
The way function parameters are declared for anonymous
functions also slightly differs from the way named functions
are declared; hence, support for anonymous functions will
require extending the JAVASCRIPT parser to support anony-
mous function declarations. These extensions are directions
for future work.

Overall, this experiment demonstrates that AUTOFLOX has
an accuracy of 90.9% across the three open-source web
applications. Note that AUTOFLOX had no false positives, i.e.,
there were no cases where the tool incorrectly localized a fault
or said that a fault had been localized when it had not.

Production website: We also used AUTOFLOX to localize
a fault on a production website — Tumblr.com. One of the
pages in Tumblr contained erroneous JAVASCRIPT code that
threw a null exception. The structure of the code is similar
to the example in Figure 1, and also involved the cycling of
different images in a banner.

Note that fault injection was not performed on Tumblr
because unlike the three open-source web applications de-
scribed above, we did not have write access to the website’s
JAVASCRIPT code, which would have allowed us to modify
the code. In addition, JAVASCRIPT code mutators currently
do not exist to the best of our knowledge, so mutating the
JAVASCRIPT code in a website to which we have no write
access is a technical challenge.

We performed manual analysis of the JAVASCRIPT code in
Tumblr and found that the null value also originated from a call
to getElementById(). Thereafter, we tested AUTOFLOX on
Tumblr to see if it is able to identify this direct DOM access.
Indeed, AUTOFLOX was able to pinpoint the correct direct
DOM access in the JAVASCRIPT code of Tumblr.

The overall implication of this study is that the assumptions
made by AUTOFLOX are reasonable as they were followed
both in the open source applications and in the production
web application. Later in Section VI we discuss the broader
implications of the assumptions made by AUTOFLOX.

E. Performance

We report the performance overhead of AUTOFLOX in this
section. We choose the Tumblr web application for these
measurements because the production code is more complex
than development code (such as the ones in the open-source

web applications tested above), and hence incurs higher per-
formance overheads. We measured: (1) performance overhead
due to instrumentation in the trace collection phase, and (2)
time taken by the trace analyzer to find the direct DOM access.

To measure (1), we crawled the Tumblr web application
using CRAWLJAX both with instrumentation and without in-
strumentation; our baseline is the case where the web appli-
cation is run only with CRAWLJAX. CRAWLJAX took 24.6
seconds to crawl the web application without instrumentation,
and 33.2 seconds to crawl it with instrumentation (average of
four runs). This means AUTOFLOX incurred a 35% overhead,
on average, in the trace collection phase. For measuring (2),
we ran AUTOFLOX on the collected trace. Averaged over
four runs, AUTOFLOX took approximately 0.115 seconds to
identify the direct DOM access in the trace analysis phase.
Therefore, the performance overhead incurred by AUTOFLOX
is relatively low, and does not affect the user experience of
the web application.

VI. DISCUSSION

Here, we discuss some issues relating to the limitations of
AUTOFLOX and some threats to the validity of our evaluation.

A. Limitations

Currently, AUTOFLOX requires the user to specify the
elements that will be clicked during the web application run
to replicate the error. This process can be tedious for the
programmer if she is not aware of all the DOM elements
(and their corresponding IDs) present in the web application,
and will often require the programmer to search for these
elements in the source code of the web application. One way
to simplify this task and effectively automate the process of
identifying all the DOM IDs is to do a preliminary run of the
web application that detects all the DOM elements — where
all elements are considered clickable — and present this list
of DOM elements to the user. However, this approach would
have the disadvantage of having to run the web application
multiple times, which would slow down the fault localization
process. In addition, this approach may not be able to detect
DOM elements created dynamically by the JAVASCRIPT code
if only a subset of the web application is crawled.

Another limitation of AUTOFLOX is that it relies on two
other tools — CRAWLJAX and INVARSCOPE— to crawl the
web application and instrument the JAVASCRIPT code. Hence,
when running the web application during the trace collection

phase, the appearance of the error is dependent on the clickable
elements chosen by the user, and the error will only appear if
the subset of crawled elements has been chosen appropriately.

Lastly, AUTOFLOX currently does not handle cases in
which the web application throws multiple JAVASCRIPT errors
in one execution, which is possible in JAVASCRIPT due to
its permissive nature. In such cases, AUTOFLOX would only
be able to localize the first error that occurred during the
execution.

B. Threats to Validity

An external threat to the validity of our evaluation is that we
only considered a limited number of web applications to assess
the correctness of AUTOFLOX. However, we have chosen
these applications as they contain many lines of JAVASCRIPT
code, thereby allowing us to perform multiple fault injections
per application. In addition, we have no reason to believe that
the JAVASCRIPT code in these web applications have been
developed in a significantly different way compared to other
web applications.

With regards to the bug report study, the limited number of
bug report repositories used also threatens the external validity.
Unfortunately, few such repositories are publicly available
for web applications, and even fewer contain client-side bug
reports.

In terms of internal validity, we have chosen to use a fault
injection approach to emulate the DOM-related errors in our
evaluation. The threat here is that the faults injected may not be
completely representative of the types of faults that happen in
the real world. Nonetheless, the bug report study we conducted
provides supportive evidence that the bugs we have injected
are prominent and must therefore be considered.

Finally, while our fault injection experiment on the three
open-source web applications is replicable, the experiment on
Tumblr is not guaranteed to be replicable, as the Tumblr source
code may change over time, and we do not have access to prior
versions of the website.

VII. RELATED WORK

We classify related work into two broad categories: web
application reliability and fault localization.

A. Web Application Reliability

Web applications have been an active area of research for the
past decade. We focus on reliability techniques that pertain to
JAVASCRIPT-based web applications, which are a more recent
phenomenon.

Static analysis. There have been numerous studies to find
errors and vulnerabilities in web applications through static
analysis [15], [16], [17]. Because JAVASCRIPT is a difficult
language to analyze statically, these techniques typically re-
strict themselves to a safe subset of the language. In particular,
they do not model the DOM, or they oversimplify the DOM,
which can lead to both false-positives and false-negatives.
Jensen et al. [18] model the DOM as a set of abstract
JAVASCRIPT objects. However, they acknowledge that there

are substantial gaps in their static analysis, which can result in
false-positives. In contrast, our technique is based on dynamic
execution, and as a result, does not suffer from false-positives.

Testing and replay. Automated testing of JAVASCRIPT-
based web applications is an active area of research [1], [2],
[3], [4]. ATUSA [2] is an automated technique for enumerating
the state space of a JAVASCRIPT-based web application and
finding errors or invariant violations specified by the program-
mer. INVARSCOPE [14] and DODOM [3] dynamically derive
invariants for the JAVASCRIPT code and the DOM respectively.
However, none of these techniques focus on fault localization.

WaRR [12] and Mugshot [13] replay a web application’s
execution after a failure in order to reproduce the events that
led to the failure. However, they do not provide any support
for localizing the fault, and leave it to the programmer to do
so. As shown in Section II, this is often a challenging task.

Finally, tools such as Firefox’s Firebug15 plug-in exist to
help JAVASCRIPT programmers debug their code. However,
such tools are useful only for the bug identification phase of
the debugging process, and not the fault localization phase.

B. Fault Localization

Fault localization techniques isolate the root cause of a fault
based on the dynamic execution of the application. They can
be classified into Spectrum-based and Slicing-based.

Spectrum-based fault localization techniques include Pin-
point [19], Tarantula [6] and Whither [20]. These techniques
execute the application with multiple inputs and gather the
dynamic execution profile of the application for each input.
They assume that the executions are classified as success or
failure, and look for differences in the profile between suc-
cessful and failing runs. Based on the differences, they isolate
the parts of the application, which are likely responsible for
the failure. However, spectrum-based techniques are difficult
to adapt to web applications, as web applications are rarely
deterministic, and hence they may incur false positives. Also, it
is not straightforward to classify a web application’s execution
as success or failure, as the results depend on its usage [21].

Slicing-based fault localization techniques have been pro-
posed by Agrarwal et al. [8] and Gupta et al. [22]. These
techniques isolate the fault based on the dynamic backward
slice of the faulty statement in the code. Our technique is
similar to this body of work in that we also extract the
dynamic backward slice of the JAVASCRIPT statement that
throws an exception. However, our technique differs in two
ways. First, we focus on errors in the DOM-JAVASCRIPT
interaction. The DOM is unique to web applications and
hence the other fault-localization techniques do not consider it.
Second, JAVASCRIPT code is often executed asynchronously
in response to events such as mouse clicks and timeouts, and
does not follow a deterministic control-flow (see Section II-B
for more details).

Web Fault localization. To the best of our knowledge, the
only paper that has explored fault localization in the context

15 http://getfirebug.com

of web applications is that by Artzi et al. [23]. However,
their work differs from ours in various aspects: (1) they focus
on the server-side code, i.e., PHP, while we focus on the
client-side; (2) they localize HTML validation errors, while
our approach localizes JAVASCRIPT faults; and (3) they have
opted for a spectrum-based approach based on Tarantula, while
ours is a dynamic slicing-based approach. To the best of
our knowledge, automated fault localization for JAVASCRIPT-
based web applications has not been addressed in the literature.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a fault-localization approach
for JAVASCRIPT-based web applications. Our approach is
based on dynamic slicing, and addresses the two main prob-
lems that inhibit JAVASCRIPT fault localization, namely asyn-
chronous execution and DOM interactions. We focus on DOM-
related JAVASCRIPT errors as we find that about 80% of the
JAVASCRIPT errors reported in online bug databases of web
applications pertain to the DOM. We have implemented our
approach as an automated tool, called AUTOFLOX, which
we evaluate using three open-source web applications and
one production application. We find that AUTOFLOX can
successfully localize over 90% of the faults, with no false-
positives.

We plan to extend this paper in a number of ways. First,
we have focused on code-terminating JAVASCRIPT errors, i.e.,
errors where an exception was thrown by the web application.
However, not all DOM-related errors belong to this category.
We will extend our technique to include localization of non-
code terminating JAVASCRIPT errors. Second, the AUTOFLOX
tool makes certain assumptions about the JAVASCRIPT code
in the web application, which could limit its application.
Although we did not encounter any issues in deploying AUT-
OFLOX on the four web applications in this study, it is possible
that the assumptions made by AUTOFLOX do not hold for
other web applications. Relaxing the assumptions is a subject
of future work. Finally, we will extend the empirical evaluation
to perform user studies of the AUTOFLOX tool, in order to
measure its ease of use and efficacy in localizing faults. This
is also an avenue for future work.

ACKNOWLEDGMENT

This research was supported in part by NSERC Discovery
grants (Mesbah and Pattabiraman), the Institute for Comput-
ing, Information and Cognitive Systems (ICICS) at UBC, and
a research gift from Microsoft Corporation. We thank the
anonymous reviewers of ICST 2012 for insightful comments,
which have served to improve the presentation.

REFERENCES

[1] A. Marchetto, P. Tonella, and F. Ricca, “State-based testing of AJAX
web applications,” in Intl. Conference on Software Testing, Verification,
and Validation (ICST). IEEE Computer Society, 2008, pp. 121–130.

[2] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of
AJAX user interfaces,” in Intl. Conference on Software Engineering
(ICSE). IEEE Computer Society, 2009, pp. 210–220.

[3] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants
for Web 2.0 Application Robustness Testing,” in IEEE Intl. Symposium
on Software Reliability Engineering (ISSRE). IEEE Computer Society,
2010, pp. 191–200.

[4] S. Artzi, J. Dolby, S. Jensen, A. Møller, and F. Tip, “A Framework for
Automated Testing of JavaScript Web Applications,” in Intl. Conference
on Software Engineering (ICSE). ACM, 2011, pp. 571–580.

[5] I. Vessey, “Expertise in debugging computer programs: A process
analysis,” International Journal of Man-Machine Studies, vol. 23, no. 5,
pp. 459–494, 1985.

[6] J. Jones and M. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in Proceedings of the 20th IEEE/ACM
international Conference on Automated software engineering. ACM,
2005, pp. 273–282.

[7] R. Abreu, P. Zoeteweij, and A. Gemund, “Spectrum-based multiple
fault localization,” in Proceedings of the 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE Computer
Society, 2009, pp. 88–99.

[8] H. Agrawal, J. Horgan, S. London, and W. Wong, “Fault localization
using execution slices and dataflow tests,” in Software Reliability Engi-
neering, 1995. Proceedings., Sixth International Symposium on. IEEE,
1995, pp. 143–151.

[9] H. Cleve and A. Zeller, “Locating causes of program failures,” in Pro-
ceedings of the 27th international conference on Software engineering.
ACM, 2005, pp. 342–351.

[10] F. Ocariza, K. Pattabiraman, and B. Zorn, “JavaScript errors in the wild:
An empirical study,” in Proceedings of the International Symposium on
Software Reliability Engineering (ISSRE). IEEE Computer Society,
November 2011.

[11] A. Mesbah, A. van Deursen, and S. Lenselink, “Crawling Ajax-based
web applications through dynamic analysis of user interface state
changes,” ACM Transactions on the Web (TWEB), 2012.

[12] S. Andrica and G. Candea, “WaRR: High Fidelity Web Application
Recording and Replaying,” in IEEE Intl. Conference on Dependable
Systems and Networks, 2011.

[13] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic capture
and replay for JavaScript applications,” in 7th USENIX conference on
Networked systems design and implementation, 2010, pp. 11–11.

[14] F. Groeneveld, A. Mesbah, and A. van Deursen, “Automatic invariant
detection in dynamic web applications,” Delft University of Technology,
Tech. Rep. TUD-SERG-2010-037, 2010.

[15] S. Guarnieri and B. Livshits, “Gatekeeper: mostly static enforcement of
security and reliability policies for JavaScript code,” in Conference on
USENIX security symposium, ser. SSYM’09, 2009, pp. 151–168.

[16] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for AJAX
intrusion detection,” in Intl. conference on World Wide Web, 2009, pp.
561–570.

[17] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application
bugs caused by asynchronous calls,” in Intl. Conference on the World-
Wide Web (WWW). ACM, 2011, pp. 805–814.

[18] S. H. Jensen, M. Madsen, and A. Møller, “Modeling the HTML DOM
and browser API in static analysis of JavaScript web applications,” in
Proc. European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE). ACM, 2011,
pp. 59–69.

[19] M. Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer, “Pinpoint:
Problem determination in large, dynamic internet services,” in Proc.
International Conference on Dependable Systems and Networks. IEEE
Computer Society, 2002, pp. 595–604.

[20] M. Renieris and S. Reiss, “Fault localization with nearest neighbor
queries,” in Proceedings of the 18th International Conference on Au-
tomated Software Engineering (ASE). IEEE Computer Society, 2003,
pp. 30–39.

[21] K. Dobolyi and W. Weimer, “Modeling consumer-perceived web appli-
cation fault severities for testing,” in 19th Intl. symposium on Software
testing and analysis, ser. ISSTA’10. ACM, 2010, pp. 97–106.

[22] X. Zhang, H. He, N. Gupta, and R. Gupta, “Experimental evaluation
of using dynamic slices for fault location,” in Proceedings of the
sixth international symposium on Automated analysis-driven debugging.
ACM, 2005, pp. 33–42.

[23] S. Artzi, J. Dolby, F. Tip, and M. Pistoia, “Practical fault localization
for dynamic web applications,” in Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering-Volume 1. ACM,
2010, pp. 265–274.

